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Abstract
Understanding human interactions in online communications is of paramount importance for our
society. Alarming phenomena such as the spreading of fake news or the formation of
echo-chambers can emerge in unhealthy communication environments and, ultimately,
undermine the democratic discourse. In this context, unveiling the individual drivers that give rise
to collective attention can help to conserve the health of our information ecosystems. Here,
following a recently proposed analogy between natural and information ecosystems, we explore
how competition for attention in online social networks and the strategies adopted by the users to
maximize their visibility shape our communication dynamics. Specifically, by analyzing large-scale
datasets from the micro-blogging platform Twitter and performing numerical modeling of the
system dynamics, we are able to measure the amount of competition for attention experienced by
users and how it changes when exogenous events captivate collective attention. The work relies on
topic modeling to extract users’ interests and memes context from the data and a framework based
on ecological niche theory to quantify the strength of negative (competitive) and positive
(mutualistic) interactions for both users and memes. Interestingly, our findings show two different
behaviors. While memes undergo a sharp increase in competition during exceptional events that
can lead to their extinction, users perceive a decrease in effective competition due to a stronger
effect of mutualistic interaction, explaining the focus of collective attention around specific topics.
Finally, to confirm our results we reproduce the observed shifts with a data-driven model of species
dynamics.

1. Introduction

Online social networks (OSNs) have not only transformed the way in which we communicate, but also how
we access and process information. In fact, since their appearance, they have played a double role: as spaces to
build social interactions and as news media platforms. Consequently, our communication model has switched
over from a centralized mass media environment and face to face interactions, to an era when all the actors
are, at the same time, information sources and receivers. This duality and the new paradigm it induced, make
also OSNs a perfect example of social information processing, leading to emergent phenomena such as viral
information spreading [1], fake news [2] and the formation of echo-chambers [3, 4].

These changes have also exposed our cognitive limitations. Our brain passed from hearing few broadcast
information sources, to be bombed by millions of messages demanding our attention. This has led to a variety
of phenomena, such as an acceleration of social dynamics [5], and terms like ‘competition for attention’ entered
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our everyday vocabulary. Moreover, OSNs are often designed to captivate our brain and maximize the time we
spend on them by providing reinforcing feedbacks [6] and instant gratification [7, 8]. These limitations along
with the huge amount of information we produce every second, induce competition between ideas/memes for
visibility, and users tend to adopt different strategies to increase the chances that their messages would be read.

To understand how these low-level drivers shape the way our society processes information, in recent years,
different approaches have been proposed. From a data analytic perspective, several works demonstrated the
role of competition in information diffusion [9, 10], our social interactions [11–14] and the quality of the
information we share [15]. All these results also found confirmation from theoretical models, for example for
the distribution of memes popularity [16–18] or how echo-chambers emerge [19].

This strong emphasis on the effects of competition and on how users respond to it, also led researchers to
draw an analogy between information and natural ecosystems [5, 20–22]. Actors (e.g. users and memes) of
OSNs are seen as species in ecological communities where they seek to maximize their abundance—visibility
in this case—and all are competing for limited resources (e.g. individuals’ attention). Moreover, the commu-
nication strategies adopted by the users like, for example, the use of specific hashtags to provide context to
their messages can be represented as mutualistic, as they favor both visibility of users and growth of certain
memes.

One example of how this analogy can lead to insights on the functioning of information ecosystems has
been the work of Borge-Holthoefer et al [20], who studied the organization of online discussions around social
protests in Spain in 2011 as an ecological network, finding that its structure evolved toward a nested architec-
ture, very close to the typical organization of natural mutualistic assemblages [23, 24]. Moreover, building on
these results, in a recent work Palazzi et al [21] proposed an ecology-inspired model [25, 26] to explain the
structural flexibility showed by OSNs in response to external shocks such as breaking news. In [5], instead, the
authors were able to explain the acceleration in collective attention they found in the digital streams and cul-
tural items by employing a mathematical model based on Lotka–Volterra dynamics—a theoretical framework
often used in population dynamics and theoretical ecology [27, 28]. Finally, from a more theoretical perspec-
tive, models based on the concept of ecological neutrality [29, 30], were able to reproduce several emergent
patterns found in online communications [22].

Here, following this research line, we exploit the similarities between natural and information ecosystems to
understand the main drivers that shape collective attention. Specifically, analyzing different datasets extracted
from the online platform Twitter and an ecology-inspired numerical model, we are able to quantify the inten-
sity of the competitive and mutualistic interactions experienced by each user, and how these change when
exogenous events focus collective attention. We start by relying on topic modeling to study the evolution of
users’ interests over time, along with the diversity of the discussion around the different topics. In this way,
we can measure the similarity between users and memes and then, employing a modeling framework based
on ecological niche-theory [26], build interaction networks similar to ecological communities with both com-
petitive and mutualistic terms. We then analyze the obtained networks with the aim of understanding how
variations in the amount of competition and mutualism experienced by the users can explain the focus of
collective attention around one or few dominating topics. These analyses allow us to explain these shifts in
attention in terms of a reduction of the effective competition experienced by the users. We then confirm this
finding by reproducing the patterns we observe in the data with numerical simulations of an ecological model
based on species abundance maximization [21]. Our results not only shed light on how information process-
ing drives users’ behaviors in social media but, in a broader sense, they spotlight the opportunities that an
ecological approach can offer to the study of information ecosystems for understanding collective phenomena
in techno-social systems

The rest of the work is organized as follows. In the next section, we introduce the datasets we will employ
in the analysis, the topic modeling technique used to extract information topics from Twitter discussions, the
ecologically inspired numerical model and the methods to quantify the strength of competitive and mutualistic
interactions from the data. Then, in sections 3.1 and 3.2 we present our results for the time evolution of topics
and users’ interests respectively while, in section 3.3, we study the user–meme interaction networks. Moreover,
in section 3.4, we confirm our previous results with the numerical simulations of our model. Finally, with
section 4 we summarize the main findings of this work and draw our conclusions.

2. Methods and data

2.1. Twitter events datasets
Since we are interested in quantifying the changes in collective attention during exceptional events, we decided
to focus on data from the online social platform Twitter. Twitter, along with being a social network and due
to its microblogging nature, is also often considered as a news and information media. Thus, social, political
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Table 1. Summary of the datasets used in the study.

Dataset Starting date Ending date # of tweets # of unique hashtags # of unique users

Spanish elections 20-04-2019 04-05-2019 4882 546 2952 41 314
Catalan referendum 01-09-2014 13-11-2014 220 364 18116 78 270
Nepal earthquake 09-05-2015 18-05-2015 5641 719 41 589 1706 559

Figure 1. Time evolution of the number of tweets for the three datasets considered in the text: Spanish general elections in 2019
(panel (a)), self-determination referendum in Catalonia in 2014 (panel (b)) and the earthquake that hit Nepal in 2015 (panel (c)).
Relevant events are highlighted in gray.

or natural events will be likely reflected in its users’ activity, allowing us to record both the change in their
interests and in their interactions.

2.2. Information topics
For our analyses, we focus on three large datasets describing Twitter activity: the consultations and protests
around the self-determination referendum organized by the Catalan government in November 2014 [21]; the
general elections held in Spain in 2019 [21] and the response to the earthquake that hit Nepal in 2015 [31]. All
the datasets have been collected through the Twitter streaming API and are publicly available (see appendix A
for details on the data collection process and their availability). Table 1 summarizes the main features of the
datasets used.

We choose those datasets because they cover both expected and unexpected events [32, 33]: from political
discussions with a fixed timeline (Spanish elections), to political/social protests like the Catalan referendum
with a mixture of organized activities and improvised protests, and an inherently unexpected natural disaster
(Nepal’s earthquake). In particular, since our aim is to study how exceptional events shape the communication
dynamics in online discussions, we focus only on events that are exogenous to the classical OSNs dynamics and
where we can have a detailed view on their evolution—e.g. salient periods can be easily identified from the
news and other media.

In order to extract information topics from the tweets, for all the datasets, we only considered tweets with
at least one hashtag (with the only exception of the Nepal earthquake dataset, where due to the extremely large
size we had to restrict our analysis to only hashtags that have been posted at least 100 times). From each tweet,
the information considered is: the timestamp of the tweet, the user-ID (previously anonymized) of the user
who posted the tweet and all the hashtags present in it. In this way, we were able to extract users’ interests
and their evolution throughout the discussion, along with hashtags co-occurrences, fundamental to infer the
information topics.

Figure 1 presents the time evolution of the number of tweets for the datasets considered. In all the cases, it is
easy to see peaks in the activity, usually related to external events, like the television debate between candidates
or the polling day for the Spanish elections or the referendum day for the Catalan referendum. These high
activity periods are usually preceded and followed by calmer periods characterized by a lower and constant
activity. Following this separation, we split each dataset into different parts, each corresponding to a ‘peak’ or
‘rest’ period, and study how users’ interests and competition for attention varies between them. In particular,
our aim in splitting the datasets is to have periods small enough to clearly distinguish between peaks, con-
taining only a single event, but also to have enough data during the rest intervals. Thus, for each dataset, we
identified the largest spike in activity and made its duration the size of the period. For example, for the Catalan
referendum, since the largest spike lasts around 10 days, we decided to divide the dataset in intervals of exactly
10 days. We applied a similar reasoning for the Nepal earthquake dataset, in which the activity peak lasts 3 days
so, we have 3 periods of 3 days each. However, for the Spanish elections dataset, due to its short duration and
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Figure 2. Example of topics extracted from the Spanish general elections dataset. The word-clouds represent the most abundant
hashtags for four selected topics detected with our method. Hashtags’ size in each figure is proportional to the number of times it
has been tweeted.

the effects of circadian rhythms, we were forced to have slightly uneven intervals to guarantee enough data
during the resting periods.

Once the datasets and the different periods are defined, we focus on how to extract users’ interests from
the raw data. This step is fundamental to measure the similarity between users and, eventually, quantifying the
competition for attention that both users and memes experience over the development of the events. To extract
users’ interests from their timeline, we rely on a network theory approach based on hashtags co-occurrence,
designed specifically to infer information topics in Twitter [34–36]. Hashtags are used in many social media
as keywords to indicate the content of a message and they often represent memes, whose meaning is known to
the users. They thus provide a concise indication of a tweet’s semantic context. In this way, the appearance of
two or more hashtags in the same tweet is often the sign of a semantic association between them—they belong
to the same topic—as it happens to words co-occurring frequently in texts [37, 38]. Based on this association,
we extract information topics as cohesive clusters of hashtags that significantly appear together in different
tweets.

To do so, for each period considered in the data, we build a weighted co-occurrence network between
hashtags, where a link is laid if two hashtags appeared together in the same tweet and its weight represents
the number of different tweets where they co-occurred. In order to eliminate spurious links and assure the
significance of the semantic associations between the hashtags, we then remove all the links which weight is
equal or smaller than 3. Once the networks have been built, information topics can be detected as clusters
of densely connected hashtags—i.e. communities in the graph. Following the same procedure proposed in
[35, 36], we thus employ the OSLOM tool [39] to detect communities in the different networks. We decided to
use OSLOM for community detection because it is able to extract overlapping communities where nodes can
belong to more than one community at a time. Thus, in our case, it is able to catch the fact that hashtags with
different meanings can be part of several topics. Figure 2 represents an example of topics extracted from the
Spanish elections dataset. In the four topics the names of the distinct national parties are clearly identifiable
along with abbreviations of the most important dates.

Once the information topics are extracted from the data, we can use them to detect users’ interests from the
hashtags they posted, and their membership to the different topics. For each user, we build a feature vector u
whose entries ui quantify user’s interest toward topic i. Specifically, ui accounts for the number of times the user
posted a hashtag belonging to topic i in their tweets. Moreover, since hashtags can be part of different topics, we
split the weight of each hashtag according to the number of communities it belongs to. For example, a hashtag
part of only one topic t will contribute to the pertinent ut by adding one. On the contrary, one belonging to
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Figure 3. Sketch of the user–topic and hashtag–topic vectors extraction method and creation of the competitive and mutualistic
matrices. (panel (a)) Hashtags are classified into topics using the method proposed in [35]. (panel (b)) Hashtag–topic vectors are
built directly with the membership of each hashtag to one or more topics. User–topic vectors can be calculated from the hashtags
tweeted by each user. If a hashtag belongs to more than one topic its weight is split evenly between all the topics it participates.
(panels (c), (d) and (e)) From the user and hashtag vectors, cosine similarity is employed to calculate topic overlap. (panels (c)
and (e)) The hashtag–hashtag and user–user competitive matrices are calculated proportionally to topic similarity between users
(hashtags). (panel (d)) Finally, the mutualistic matrix is built as the similarity between users and hashtags.

two topics will contribute 0.5 to each of the two corresponding entries of u. In figures 3(a) and (b) we provide
a diagram showing how the hashtags posted by the users are classified into topics and then used to build the
user vector u. The same procedure can be then applied to hashtags to build an equivalent hashtag vector h for
each of them, accounting for their participation in the different topics.

User vectors quantify how individual attention is distributed across the different topics and how external
events can focus it over a specific theme. However, individual interests are also a proxy of competition for atten-
tion. If everyone is interested in a specific topic, hashtags on that topic will experience a stronger competition
for spaces in the users’ screens. In the same way, users compete with their peers to get their messages read. On
the other side, a user can decide to post about popular topics to have the advantage of reaching a potentially
larger audience, leading to a sort of mutualistic interaction.

To quantify how much competition users experience in peak and resting periods in our datasets, we measure
how similar the user vectors are one to the other. For each couple of user vectors u and v we calculate the cosine
similarity:

simcos(u, v) =
u · v

‖u‖ ‖v‖ . (1)
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In this way, we have a measure that ranges from 0 (users with totally disjoint interests) to 1 (totally aligned
users). Finally, hashtag competition can be estimated in the same way using the hashtag vectors h instead of u
(see section 2.4 for details).

2.3. Dynamical model of users’ attention
Defining users and hashtags similarity allows us to quantify the amount of competition and mutualism expe-
rienced by each node. However, to get further insights on the driving mechanisms behind these changes in
collective attention, we also employ an ecology-inspired visibility optimization model proposed to explain
structural changes in the user–hashtag interaction networks [21] over the course of an event.

Following the analogies between ecological communities [25, 26] and information ecosystems [21, 22],
the model is based on the assumption that the attention dynamics recorded in the data is the result of an
optimization process where users aim to maximize their visibility. Users and hashtags are thus seen as species of
a mutualistic assemblage belonging to two different classes—e.g. plants and pollinators in natural ecosystems.
Competition takes place between species of the same guild (user–user or hashtag–hashtag), while mutualistic
interactions occur between species of different guilds (user–hashtag), with the species dynamics modeled by
Lotka–Volterra equations with a Holling-type II functional response [24, 25]:

dnU
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= nU

i

⎛
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where nU
i and nH

i stand for the abundance (visibility) of species i part of the users’ (U) or hashtags’ (H) guild,
while ρU

i and ρH
i represent the respective growth rates and h the handling time of the Holling-type II mutualistic

functional response. The intensity of the users and hashtags competitive and mutualistic interactions is defined
by matrices βUU , βHH and γUH , respectively. Finally, θ is the adjacency matrix of the mutualistic interactions
accounting for the hashtags produced by each user in their posts.

The optimization process at the basis of the model is the same as the one proposed in Suweis et al [25],
where species (users) rewire their mutualistic connections to randomly selected partners (hashtags) and the
new links are kept only if they lead to an increase in abundance (visibility). Otherwise, the original connection is
restored. Specifically, at constant time intervals, a random user U is selected and one of its existing connections
to hashtag H is rewired to a new hashtag H′. The link to be rewired is selected with probability pUH ∝ 1 − k−1

H

where kH is the degree of H. After the rewiring, we let the system evolve until the equilibrium is reached. If at
the end of this period U’s abundance is greater than the previous one, the link is kept; otherwise, the previous
configuration is restored.

It is important to notice that in our model only users maximize their abundance (visibility) since they
choose the hashtags to post in their tweets. Thus, changes in the hashtag networks are due only to users’ actions.

Finally, information topics are modeled as ecological niches [40] associated to each species. For the users,
they represent the set of individual interests while, for the hashtags, they define their semantic context.

2.4. Estimating competition and mutualism from data
Once the species dynamics are defined, we need to estimate the interaction strength among species (βUU , βHH

and γUH) from our data. To do so, we follow the approach proposed by Cai et al [26], where competition
and mutualistic strengths are proportional to the niche overlap between species of the same (competition)

and opposite (mutualism) guild. This way, we can estimate niche overlap Ggg′
ij between species i belonging to

guild g and species j of g′ from the data as the cosine similarity between the topics vectors of i and j. Then, the
elements of the competition matrices βHH

ij and βUU
ij are simply proportional to the ovelap: βHH

ij ∝ Ωc · GHH
ij

and βUU
ij ∝ Ωc · GUU

ij , with Ωc a global factor to tune the absolute strength of the interaction. In a similar way,
we can define the mutualistic strength as: γUH

ik ∝ Ωm · GUH
ik , with the only difference that, in the model, the

mutualistic strength γUH
ik is then multiplied by θUH

ik to include the fact that user i may (θUH
ik = 1) or may not

(θUH
ik = 0) interact with hashtag k. Finally, to be able to compare the two strengths we impose Ωc = Ωm.

3. Results

We start our analyses by dividing our datasets in different periods, depending on their activity (i.e., the overall
number of tweets produced). We thus distinguish between what we define as peak periods, when external
events produce spikes in Twitter activity, such as the television debate day for the Spanish elections dataset
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Figure 4. (panels (a)–(c)) Time evolution of the number of tweets in the different datasets divided by activity periods. (panels
(d)) Distribution of activity, in terms of number of tweets generated by each topic, for the different periods for the Spanish
elections dataset. To ease visibility only the largest ten topics are showed. Peak periods are marked by the gray bars.

or the referendum day for the Catalan dataset; and resting periods, where the discussion is still active but not
driven by major external events. In this way, we can use the resting periods to define a baseline for activity and
collective attention and compare them with the peak periods.

Figures 4(a)–(c) show the split of the three datasets we are considering. For the Spanish elections dataset
(figure 4(a)) we define five different periods with the second and fourth covering large events, while the first
and fifth represent our baseline. The third one is a mixture of peak and resting periods, since it is characterized
by an increased activity but only smaller events took place. We adopt a similar split also for the Catalan self-
determination referendum dataset. In this case, we defined seven periods, with the first and seventh as peaks,
while the second, fourth and sixth as resting states. The remaining two (third and fifth intervals) are classified
as mixed. Finally, in the Nepal earthquake dataset we identify three periods, where the first one represents the
resting state, the second the highest activity and the third one a mix of peak and rest.

Once defined our baseline and active periods, we apply the topics extraction procedure to each period and
study how the hashtags communities and users’ interests evolve through time. To do so, for each period we
compute the hashtag co-occurrence network and extract the most significant communities from it, defining
our topics and hashtags’ and users’ membership as described in section 2.2.

3.1. Topics evolution
From the networks it is possible to study how information topics evolve, and the corresponding discussions
re-arrange around the external events. Table 2 summarizes the main features of the co-occurrence networks
obtained from the data. A result that first catches the eye is the fact that, even if the networks for different
periods have different sizes—e.g., the number of nodes/hashtags for the Catalan referendum dataset ranges
from 310 to 1602 between the least and most active periods—the number of communities/topics is more or
less constant. This contrasts with our assumption that, during relevant events, collective attention focuses only
on one or a few ‘important topics’. This discrepancy is solved if we consider not only the number of topics but
also the activity around them, in terms of the number of tweets they generate. Figure 4(d) shows how tweets
are distributed among the ten largest topics for the different periods of the Spanish elections dataset. Although
activity in general is highly heterogeneous, however, during peak periods (marked by gray bars) this tendency
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Table 2. Features of the co-occurrence networks extracted from each
considered dataset.

Dataset Period # of hashtags # of links # of topics

Spa. elec. 1 1344 6866 75
2 1714 11587 68
3 1899 12026 77
4 1736 12373 63
5 1313 5114 60

Cat. ref. 1 703 3170 9
2 310 863 20
3 586 2070 10
4 350 1037 21
5 338 911 16
6 362 1112 13
7 1602 5837 12

Nepal 1 471 1564 29
2 771 4739 27
3 670 2921 33

Figure 5. Alluvial diagram showing the evolution of topics for the Catalan self-determination dataset. Colors represent the
different periods and each box represents a topic (a community in the co-occurrence network). Box sizes is proportional to the
number of tweets generated by each topic and, for each period, only the four largest topics are show. Flows represent the number
of tweets moving from one topic to the other.

exacerbates with one or two topics generating almost the 90% of the tweets (we obtain similar results for the
other two datasets, not shown).

Taken together, the last two results (i.e., the almost constant number of topics over different periods, as
shown in table 2, and the higher heterogeneity in attention during peak events presented in figure 4(d)) depict
a clear scenario. During normal activity periods, users’ interests are focused on specific topics and hashtags
compete for attention inside individual discussions. When an external event captures collective attention, orig-
inal topics remain active but generate way less activity than before. To visualize how attention flows between
the different topics over time, figure 5 shows an alluvial diagram of the activity around the topics in the Catalan
referendum dataset (we obtain similar results for the other datasets, not shown). In each block (relative to a
time period) the size, in terms of number of tweets, and the flows of activity for the four largest topics are
shown. As a confirmation of the results in figures 4(c) and (d), during peak periods (first, third and seventh)
all flows converge around one single topic. When external events fade out, flows split back to different discus-
sions or, some hashtags stop to be used during calm intervals (e.g. the second period) to regain interest in high
activity periods as shown, for example, by the large flows moving from the first period to directly the third.

3.2. Users’ similarity
Once studied how exceptional events shape hashtags dynamics, we can now focus on the other side of the coin:
users’ behavior. We use the cosine similarity between user–topic vectors to quantify interests overlap between

8
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Figure 6. Cosine similarity between user–topic vectors of the most active users for the Catalan referendum dataset. Cosine
similarity has been calculated following equation (1). The most active users have been selected as the ones that participated in the
discussion for, at least, the 90% of the time and posted at least ten tweets during the whole period, leading to 400 individuals.
Shaded areas mark peak periods.

Figure 7. Estimation of competitive and mutualistic strengths for: hashtag–hashtag and user–user competition (first and second
row, respectively) and user–hashtag mutualistic interactions (third row) for the 400 most active users and the hashtags they used.
Interaction strength for each user/hashtag is calculated from the matrices βHH , βUU and γUH as the average value of each row. In
the box-plots the gray line represents the median of the distribution and colored areas the 25th–75th percentiles. Shaded areas
mark peak periods.

pairs of users. A higher average similarity will point to a focus of collective attention around few specific topics
and, in turn, increased competition.

In figure 6 we present the distribution of similarity between all the possible pairs of the most active users
(active at least 90% of the time and who posted at least ten tweets with hashtags for a total of 400 users) for
the Catalan referendum dataset. As expected, the results match what we found for the hashtags. During low
activity intervals (i.e. periods 2 and 4) users’ similarity is practically uniformly distributed between 0 and 1
meaning that separated discussions are taking place, each with an—almost—equivalent activity. On the other
side, high activity periods are characterized by an almost perfect alignment between users with the similarity
distribution peaked around exactly one: everyone is talking about the same topic.
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Figure 8. Re-scaled difference between competition and mutualism over the different periods. Each point represents the average
difference between competitive and mutualistic strength for each user (hashtag) re-scaled to the value of the observed during the
resting period (fifth interval for the Spanish elections, first for the Nepal earthquake and second period for the Catalan
referendum dataset). Shaded areas mark peak periods.

3.3. Quantifying competition and mutualism during exceptional events
The results so far in figures 4–6 can be easily understood in terms of visibility maximization. In normal times,
users tend to focus on their specific interests and aim for visibility inside their communities. Important events
can captivate everyone’s attention, leading users to join the conversation. This simple response driven by
individuals’ strive for visibility has some complex consequences, however. On one side, an increase in com-
petition for attention. With a huge amount of messages covering one single topic, the probability for each
user’s ideas to be heard decreases. On the other side, the use of hashtags related to relevant topics can lead to a
mutualistic (positive) interaction as they allow to reach a larger audience. Our goal is to quantify the strength
of both these interactions to understand which one dominates the dynamics in the different periods. To do so,
as detailed in section 2.4, from users’ and hashtags’ similarities we build three interaction networks—two for
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Figure 9. Comparison between the effective mutualistic interaction strength γUH
ij θUH

ij extracted directly from the data and the one
obtained from the visibility optimization model. (panels (a)–(c)) Calm-to-peak transition. In this case, the model is initialized as
follow: to simulate the effect of an exceptional event we consider the β and γ matrices for the 400 most active users and the
hashtags they used from a high activity period in the dataset (period 2 for the Spanish elections and the Nepal earthquake
datasets, period 1 for the Catalan referendum) while the user–hashtag interactions θ that mark if a user posted a certain hashtag is
taken from the previous/next calmer period (period 1 the Spanish elections and the Nepal earthquake and period 2 the Catalan
referendum). (panels (d)) Peak-to-calm transition. Matrices β and γ for the 400 most active users the relative hashtags are
selected from a calm period following a period of high activity for the Spanish elections dataset (period 5) while matrix θ is
extracted from the previous period (period 4). In all the cases we let the model evolve for 5 × 104 rewiring attempts. The
remaining parameters are Ωc = Ωm = 0.08 for the Spanish elections and the Nepal earthquake, and Ωc = Ωm = 0.1 for the
Catalan referendum. The box-plots represent the distribution of the values γUH

ij θUH
ij . The orange lines represent the median of the

distributions and shaded areas the 25th–75th percentiles.

user–user (βUU ) and hashtag–hashtag (βHH) competition, and one for user–hashtag mutualism (γUH)—and
analyze changes in nodes strength throughout time. Using niche overlap to estimate competitive and mutu-
alistic strengths [26] has the advantage of re-scaling both terms making them comparable. This way we can
quantify how much each one weighs in the dynamics of the system.

The box-plots in figure 7 show how strength is distributed in the different periods for the three datasets,
and the 400 most active users and the hashtags they used. In all the cases we find an increase in both com-
petition and mutualism during high activity events. However, there are differences between interaction types.
Competition experienced by users is quite high even during low activity periods. The arrival of an external
event, and the subsequent shift in attention, only slightly increases its strength. Hashtag competition instead
is, in general, lower during resting periods, but shows a larger increase during events. Something similar hap-
pens with mutualistic interactions: with moderate values (with a median of around 0.4) for normal periods
and sharp increases up to almost 1.0 in peak periods.

These differences, in both basal and aroused levels, lead to the question of which mechanism weights the
most during the different periods. To answer it, in figure 8 we plot the average difference between competitive
and mutualistic strength for each of the 400 users and associated hashtags, re-scaled to the value they experience
during the resting periods. Interestingly, we find two opposite behaviors for users and hashtags. During the
peak intervals, the effective competition perceived by the users decreases considerably as mutualistic strength
increases more than competitive strength. This effect pushes users to actively participate in the discussion as
they see that the ideas they post receive more attention. On the contrary, during events, hashtags on average
experience an even stronger competition with respect to normal periods. This is probably due to the fact that
hashtags not related to important topics will receive extremely low attention, while the ones affiliated with the
major topics have to endure the increased pressure generated by users’ interests.

11
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3.4. Modeling attention switches during exceptional events
After quantifying the effective competition experienced by the agents, we conclude our analyses by trying to
understand what are the major drivers behind the re-organization of the information topics we see in the
data. To do that, we employ the visibility optimization model introduced in section 2.3. In particular, while
in [21] the authors run the same model on synthetic data to reproduce the structural reorganization of the
user–hashtag interaction networks during exogenous events, here we go one step further and inform the model
with the matrices obtained directly from the events datasets. This way, we can test the hypothesis that visibility
optimization, and thus the reduced perceived competition, is the main driver behind the focusing of collective
attention.

We do so by running the model for two consecutive periods of our data: a calmer one followed by a peak
one—e.g., periods 1 and 2 in the Spanish elections dataset—and then comparing the user–hashtag network
optimized by the model, γUH

ij θUH
ij with the one extracted from the data. Specifically, to simulate the arrival of

an external event, we initialize our simulations with matrices βUU , βHH and γUH from the peak period, but
with the user–hashtag adjacency matrix θ from the previous, calmer one. In this way, θ represents the interests
users had before the arrival of the event, while β and γ denote the push that the new topic exerts on the agents.
We then let the model evolve, rewiring the connections in θ, until a steady state in species abundance has been
reached (see the caption of figure 9 for the model parameters). At the end of the simulation, we compare the
effective mutualistic interactions γUH

ij θUH
ij obtained from the data of the peak period with the one optimized by

the model. In addition, we also check if visibility optimization is able to explain not only the focus of collective
attention around a specific event, but also the opposite transition when, at the end of a peak period, users focus
back on their original topics of interest. Consequently, we initialize the model with matrices βUU , βHH and
γUH from a calm period (period 5 for the Spanish elections), and then optimize matrix θ from the previous
peak period (period 4).

In figure 9, the box-plots show the comparison between the data and the model, for both the calm-to-
peak transitions for all the three datasets (panels (a)–(c)) and the peak-to-calm (panel (d)) transition for the
Spanish elections. In all the cases, we find a quite good agreement between matrices γUH

ij θUH
ij , demonstrating

that the optimization process alone reproduces the effective strength of the user–hashtag interaction networks
extracted from the data. This further confirms our previous results, i.e., that users focusing on the trending
topics during exogenous events experience a lower effective competition and, once the event ends, visibility
optimization drives them back to their original interests.

4. Discussion and conclusions

The advent of OSNs changed the way in which we, as a society, process information. We moved from the
classical one emitter—multiple receivers scheme typical of the mass media era to an intricate network where
everyone is a producer and consumer at the same time. Thus, understanding the drivers that shape our col-
lective behavior in this new scenario is of paramount importance to avoid distortions of our information
processing such as the spreading of fake news or the formation of echo-chambers that can alter the democratic
debate.

In this work, we built on the analogy between natural and information ecosystems to quantify the compe-
tition for attention experienced by the agents of an OSN during exceptional events and how they respond to
it. In particular, employing a modeling framework based on ecological niche-theory, we were able to measure
the intensity of competitive and mutualistic interactions between users and hashtags. Our results show that,
although during the peak of the event, competition sensibly increases for both users and hashtags, it is also
associated with a sharp increase in users’ mutualism. Interestingly, for users—that, on average, already expe-
rience higher levels of competition—this translates into a positive gain in terms of interactions, effectively
reducing the net competition. On the other side, this effect is limited for the hashtags that end up experiencing
stronger competition. Moreover, those patterns seem to be universal as they do not depend on the nature of
the event—political, social or natural—nor on the way tweets have been collected.

Our findings also have some profound implications in terms of information processing and collective
behaviors as they bring light to the mechanisms behind the emergence of collective attention in online social
media. In [21], employing the same visibility optimization model, the authors showed that exogenous events
cause a structural change in the user–hashtag interaction network. Here, informing the model with real data,
we understand why this new configuration is more advantageous for the users. The agreement between the
data and the numerical simulations suggests that the seek for visibility drives users’ behavior: individuals par-
ticipating in online discussions tend to maximize their visibility inside theirs topics of interest leading to high
levels of competition inside each topic. At the arrival of an event, the same visibility maximization invites users
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to follow the dominating topic, increasing competition but also creating larger audiences. This reorganization,
however, is stable because mutualistic advantages exceed the stronger competition.

Although the success of our modeling in shedding light on users’ behavior is encouraging, it still represents
an idealization of the complex dynamics taking place in online social systems. For example, we are implicitly
assuming, as in the vast majority of ecological models, that mutualistic (competitive) interactions only take
place between species of different (same) guilds. However, this assumption may overlook some second order
dynamics, like intra-guild mutualism that has been recently discussed in the ecological modeling literature
[41, 42]. In Twitter, these effects translate into positive interactions between users or hashtags, for example the
boost in visibility obtained by one user when their messages are retweeted by another one or the co-occurrence
of hashtags that allow each of them to reach larger communities. The inclusion of such mechanisms could
help to understand the emergence of influential users and the endogenous dynamics of Twitter events. Finally,
another simplifying assumption in our framework is that the interaction strengthΩ is set equal for competitive
and mutualistic interactions (Ωc = Ωm). This is a common assumption in ecological modeling to reduce the
parameters space and, in our framework, it is needed to correctly compare the interaction matrices β and γ.
Nevertheless, inferring Ω from the data would allow for a better characterization of competition dynamics in
OSNs.

In conclusion, we believe that our work demonstrates, once more, how an ecological approach to the study
of information ecosystems can provide useful tools for understanding collective and social dynamics.
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Appendix A. Data and code availability

All the Twitter datasets are publicly available. The Catalan self-determination referendum and the Span-
ish national elections datasets can be downloaded from https://osf.io/j5qwx/ (accessed 20 September 2021).
For the Catalan self-determination referendum, data were collected by selecting all the tweets contain-
ing at least one hashtag from a list of around 70 predetermined hashtags, or posted by one account
from a list of approximately 50 users active in the referendum process and Catalan independence move-
ments. A similar filtering was employed to collect the Spanish national elections dataset, where tweets
were collected if containing at least one keyword from a total set of 300 relevant terms that could
either be Twitter usernames or hashtags related to the electoral process such as candidates’ names, par-
ties or campaign hashtags. The 2015 Nepal earthquake dataset was firstly collected in [31] and is available
at https://figshare.com/articles/dataset/Twitter_event_datasets_2012-2016_/5100460 (accessed 20 September
2021). In this case, the keywords used for filtering were: ‘nepal’, ‘earthquake’, ‘nepalearthquake’.

Finally, the code for the abundance optimization model can be found at the COSIN3 group Github page:
https://github.com/COSIN3-UOC/dynamical-niche-model (DOI 10.5281/zenodo.4555890).
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